35th Annual Southern Division

Elementary Art & Science Fair
2015 - 2016
Dr. Desmond K. Blackburn
The School Board of Brevard County strictly prohibits discrimination on the basis of sex including sexual harassment, gender, race, color, religion, national origin, genetic information, disability, marital status, age, or any other factors protected under applicable federal, state, or local law. This notice applies to all educational programs, activities, or employment practices/procedures of the School Board of Brevard County. The School Board of Brevard County is in compliance with the Americans with Disabilities Act of 1990 (ADA) and the Amendment Act of 2008 (ADAA), the Florida Education Equity Act of 1984, Age Discrimination Act of 1967 and Section 504 of the Rehabilitation Act of 1973, Civil Rights Act of 1964 including: Title II, Title VI, and Title VII, United Stated Education Amendments of 1972 - Title IX, Age Discrimination in Employment Act (ADEA), Individuals with Disabilities Act (IDEA), and the Boy Scouts of America Equal Access Act.

Students, parents, or the public with inquiries regarding this non-discrimination policy are encouraged to review Board Policy 2260 - Nondiscrimination and Access to Equal Educational Opportunity and Board Policy 5517 - Harassment. Students, parents, or the public with questions or wish to file a grievance may contact their school administrator directly or if there is an issue in doing this, you may contact:

Student/Public Equity
Mr. Robin L. Novelli
Dir. High School Programs
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 631-1911, Ext. 310
Novelli.Robin@Brevardschools.org

Exceptional Education/504 Equity
Dr. Patricia Fontan
Dir. Exceptional Student Education
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 631-1911 Ext. 505
Fontan.Patricia@Brevardschools.org

Employees or job applicants with inquiries regarding this non-discrimination policy are encouraged to review Board Policy 3362 - Anti-Harassment. Employees or job applicants with questions or wish to file a grievance may contact their school/department administrator or if there is an issue in doing this, you may contact:

Employee/Job Applicant Equity
Mr. James C. Hickey IV
Dir. Human Resources & Labor Rel.
2700 Judge Fran Jamieson Way
Melbourne, FL 32940
(321) 631-1911 Ext. 265
Hickey.Jim@brevardschools.org

Reasonable accommodations are available for persons with disabilities to complete the application and/or interview process. Applicants/Individuals with disabilities requesting accommodations under the Americans with Disabilities Act (ADA) may contact the Employee/Job Applicant Equity Coordinator for assistance. All policies and procedures of the School Board of Brevard County as indicated above can be located on the World Wide Web at the following web address: http://www.neola.com/brevardco-fl/. This Publication or portions of this publication can be made available to persons with disabilities in a variety of formats, including large print, braille or audiotape. Telephone or written request should include your name, address, and telephone number. Requests should be made to Kim Parker, Exceptional Education Projects, (321) 633-1000, ext. 535, at least two (2) weeks prior to the time you need the publication.
TABLE OF CONTENTS

Science Fair Section

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Fair Officials and Committee</td>
<td>1</td>
</tr>
<tr>
<td>Schedule of Activities</td>
<td>2</td>
</tr>
<tr>
<td>Guidelines</td>
<td>3-5</td>
</tr>
<tr>
<td>Definitions of Categories & Project Security for the Fair</td>
<td>6</td>
</tr>
<tr>
<td>Elementary Science Project Research Plan and Approval Form</td>
<td>7-8</td>
</tr>
<tr>
<td>Judging Criteria</td>
<td>9-10</td>
</tr>
<tr>
<td>Judging Sheet</td>
<td>11</td>
</tr>
<tr>
<td>Science Fair Project Entry Sheet</td>
<td>12</td>
</tr>
<tr>
<td>Student Projects Entry Checklist</td>
<td>13</td>
</tr>
<tr>
<td>Awards</td>
<td>14</td>
</tr>
<tr>
<td>Tips for Exhibitors</td>
<td>15</td>
</tr>
<tr>
<td>How to do a Science Projects – suggestions and helps</td>
<td>16-18</td>
</tr>
</tbody>
</table>

FORMS

<table>
<thead>
<tr>
<th>Form</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualified Scientist Form</td>
<td>19</td>
</tr>
<tr>
<td>Designated Supervisor Form</td>
<td>20</td>
</tr>
<tr>
<td>Informed Consent Forms</td>
<td>21 - 21a</td>
</tr>
<tr>
<td>BSL-1 Checklist for Pathogenic Hazardous Biological Agents</td>
<td>22</td>
</tr>
</tbody>
</table>

Art Fair Section

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art Fair Officials and Committee</td>
<td>23</td>
</tr>
<tr>
<td>Schedule of Activities</td>
<td>24</td>
</tr>
<tr>
<td>Check In and Check out Procedures for the Art Fair</td>
<td>25</td>
</tr>
<tr>
<td>Art Fair Guidelines</td>
<td>26-27</td>
</tr>
<tr>
<td>Recycle / Environmental Category</td>
<td>28</td>
</tr>
<tr>
<td>Judging and Awards</td>
<td>29</td>
</tr>
</tbody>
</table>
SCIENCE FAIR OFFICIALS

Mr. Barry K. Pichard
Chairman and Principal of Sunrise Elementary

Mrs. Marilyn E. Sylvester
Co-Chairperson and Principal of Longleaf Elementary

Dr. Desmond K. Blackburn
Superintendent of Schools

Mrs. Jane Cline and Dr. Mark W. Mullins
Area Superintendents

Mrs. Cyndi Van Meter
Associate Superintendent of Curriculum and Instruction

Dr. Lynn Spadaccini, Director
Office of Elementary Programs

Mr. Ed Short, Resource Teacher
Office of Elementary Programs

Ms. Brenda Sheets
President of Harris Foundation

Ms. Coleen Bondi
Manager, Harris Corporate Relations

Science Fair Committee Members
Michelle Aloise, Indialantic
Maribeth Boyle, Ocean Breeze
Janice Frye, Lockmar
Joanne Gold, Sunrise
Susanne Goodwin, Sunrise
Holly Keyes, Ocean Breeze
Lisa McBee, South Area Staffing Specialist
Chimene Rice, Surfside
Michelle Ruth, Pt. Malabar
Paul Schryer, Quest
Schedule of Science Fair Activities

2015
August 26
Science and / or Art Fair Contact names due to Sunrise Elementary.

September 8
3:30 pm – Riviera ES – media center

September 10
3:30 pm – Longleaf ES – media center
Distribution of Science Fair Contact Packets

September – February
Please refer to the Step by Step Science Fair Planning packet distributed at the Contact Meeting.

2016
March 1
Deadline for receiving Electronic student listing to be sent to Jan Frye - Lockmar Elementary School

March 8, 9 and 10
Science Fair Activities
Melbourne Civic Auditorium
625 E. Hibiscus Blvd., Melbourne - 32901

March 8
Set up day for Science Projects
Noon – 4:00 PM

March 9
Student Interview Day

March 10
Open House – 3:00 PM – 6:30 PM
Art Awards Ceremony – 6:30 PM
Science Awards Ceremony – 7:00 PM
Art and Science Projects to be picked up by school Representative/s at the close of the fair

SCHOOL FAIR CONTACTS
Information will be sent via e-mail regarding all aspects of the 35th Annual Science Fair.
Please contact if you have any questions during the year.
Guidelines
Southern Division - Elementary Science Fair
The following guidelines will be used in the process of screening and exhibiting projects for the Southern Division Elementary Science Fair.

1. Students’ projects, research plans, and testing procedures must be reviewed and approved by their teacher.
 A. Each school must have a Science Fair Committee in place that can support the classroom teacher with advice and guidance.
 B. Students designing their own experiments for science projects will need guidance to conduct safe and ethical science. An “Elementary Science Project Research Plan and Approval Form” template is provided to assist. (pages 7 & 8)
 C. Teachers, students and parents must work together to review and complete this form, so that everyone has an understanding of the intended project and is aware of any potentially dangerous or unethical situations before the student begins any testing.
 D. Students must always follow approved procedures and never perform unauthorized experiments.
 E. The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers and parents. www.societyforscience.org/isef/rulesandguidelines.

2. Students must be enrolled in a public, charter or private school. Home Schooled or Virtual students are to submit their entries to the public school where the child would attend according to the district attendance zone guidelines. The home school entry must contact the public school about their fair and then be judged along with all the other entries from the public school. If selected, the home school entry would attend the fair as part of the public school science team.

3. Each school may send one winner for each category (Biological, Physical or Environmental) and grade level (4-6) for a maximum total of nine (9) students.

4. School Contact Coordinator will send an electronic student listing following the school fair or by March 1, 2016 to Jan Frye, Lockmar Elementary.

5. Projects must be individual. Group exhibits will not be admitted. Only exhibits prepared during the current school year may be entered.

6. Exhibits must be constructed and developed by the students. Help must be limited to advice only.

7. Exhibits must be confined to table space with limits of 4 feet in height, 2 feet in width, and 12 inches deep. No display items in front of exhibit. ONLY Research or Daily logs. Projects larger than size limitations will be disqualified at check-in area.
8. Each school will be responsible for setting up the displays. This should be done on **Tuesday, March 8, 2016** between NOON to 4:00 PM.

9. The Committee reserves the right to:
 a. refuse an exhibit that is considered unsafe.
 b. disqualify an exhibit which may bring discredit to the Fair
 c. refuse a project that did not treat invertebrates or vertebrates humanely
 d. refuse a project with ANY DEATHS in any vertebrate group or subgroup.
 A project with these results is not permitted to be entered into the fair, even if results are unintentional/accidental.
 e. **Projects not following proper procedures may be excluded from the fair and may (or will) not be eligible for awards.**

10. Students are **not** allowed to do projects that are clearly dangerous.
 a. Testing involving firearms, knives or other items that could be considered, as weapons are not permitted.
 b. Testing involving fireworks or other explosives is not allowed.
 c. Any project involving controlled substances, prescription drugs, alcohol, and tobacco is not allowed.
 d. The use of any potentially hazardous chemicals, devices, and activities require direct supervision by a Designated Supervisor.

11. **Project displays are limited to:**
 a. **Research and Daily Log** – usually in a notebook format in front of show board
 b. **Research data and other items** should be displayed through the use of:
 Charts, Drawings, Graphs and Photographs
 c. 3-D objects do not have an impact on the placing of the project. The Committee recommends use of 3-D foam letters and limited display.

12. **Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) is potentially dangerous and must only be done with expert and careful supervision.** Samples/organisms must **NOT** be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but not limited to, projects involving blood, growing mold and culturing swabs from the environment. Instead all microbial samples/organisms should be obtained from a science supplier/company (ex. Carolina Biological Supply) and are limited to Biosafety Level 1 (BSL-1). The BSL-1 Checklist must be used to guide safe practices such as sealing Petri dishes, proper disposal, etc. Use of the **Qualified Scientist Form** and **Designated Supervisor Form** are required to ensure student’s and others’ safety. **Forms are to be part of the daily log to be viewed by the judges.**

 “Microbiology projects are potentially hazardous. Directors ask that schools be more accountable in this area and exclude projects where proper safety procedures and forms were not followed.

 A project that is not “qualified must not be submitted to the Division Fair.”
13. Projects involving invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.) must have a clear purpose that has scientific significance. Invertebrates must be treated humanely, and intentionally harming them without scientific purpose should not occur.

14. Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycle stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates must be treated humanely, and if a project could cause pain or distress to the vertebrate the student will need to design a new question and procedure. When non-human vertebrate animals are tested and their environment is changed, a Qualified Scientist Form and Designated Supervisor Form are required to ensure humane treatment. Forms will be retained at the school level. A project with ANY DEATH in any vertebrate group or subgroup is not permitted to be entered into the Science Fair even if the deaths were unintentional or accidental.

15. In some cases, students may choose to use human subjects for their experiments. However, when an experiment could cause more than minimal risks to the human subject, the subjects (and their parents, when a minor) must be informed of, and consent to, the testing procedures before any experimentation begins. In these cases, use of the Qualified Scientist Form, Designated Supervisor Form and Informed Consent Form is required to ensure the safety of the human subjects. Forms will be part of the project package brought to the fair. For more details, see the online Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines.

16. Student and school identifications must be removed from the project. All projects will be provided an identification label for the fair.

17. Student photos are permitted to be displayed. This is a parent and/or school decision. **Photo credit must be provided. E.G. – “Photographs taken by (name)”**

18. Students must be present on Judging Day for project interviews – no exceptions (tapes, videos, etc).

19. The school is responsible for the removal of all exhibits when fair is completed. The Committee will not be responsible for any exhibits left after the Fair closes.
DEFINITION OF THE CATEGORIES

BIOLOGICAL: Projects that deal with the vital processes of living organisms, plants, microorganisms, and animals (including humans), and how these processes are affected as a result of controlling a variable. Processes may include but not be limited to such functions as growth, maintenance, breathing rate, pulse, learning, memory, vision, etc. **Animals/insects must be treated humanely.** (Page 4 & 5)

PHYSICAL: Projects related to the natural sciences such as physics, chemistry, as well as earth and space sciences that deal primarily with non-living materials. Topics may include but not be limited to: properties of matter, physical and chemical changes, various forms of energy, forces, motion, processes that shape the earth, weather, etc.

ENVIRONMENTAL: Projects that focus on **interactions with the natural surroundings.** Projects may include the relationships of energy, population, pollution, resource allocation and depletion, conservation, transportation, and technology to the total environment. Topics may include but not be limited to: ways that **human interactions** protect or improve the quality of life by wisely using, reusing, recycling, or reducing use of our natural resources; ways that technology impacts our resources; ways that **human interactions** negatively impact the quality of life by pollution, etc.

- The school and student determine project categories.
- Projects that may qualify in more than one category must be entered in the category of major emphasis.

PROJECT SECURITY FOR THE FAIR

In order to prevent loss to the student concerning his/her exhibit, the following rules should be followed.

1. The Committee will make every effort to safeguard all projects, but the responsibility for the security of the entry rests with the individual contestant.

2. On Judging Day only Science Fair Officials, judges and student participants will be permitted in the judging area. Special accommodations will be made for special needs students and others through the Chairman or Co-Chair of the Science Fair.

3. Open House – **March 10, 2016** is from **3:00 – 6:30.** Refer to item # 1 for clarification.
Elementary Science Project Research Plan and Approval Form

Elementary students designing their own experiments for science projects will need guidance to conduct safe and ethical science. Teachers, students and parents MUST work together to review and complete this form, so that everyone has a complete understanding of the intended project and is aware of any potentially dangerous or unethical situations before the student begins any testing. Each school MUST have a Science Fair Committee in place. Questions concerning this form and other science project concerns MUST be referred to the school Science Fair Committee.

Guidelines for practicing safe and responsible science for students, parents and teachers

- Students are not allowed to do projects that are clearly dangerous. Testing involving firearms, knives and other items that could be considered weapons in a school setting is not permitted. Testing involving fireworks or other explosives is NOT allowed. Testing involving controlled substances, prescription drugs, alcohol, and tobacco is NOT allowed. The use of any potentially hazardous chemicals, devices, and activities require direct supervision by a Designated Supervisor.

- Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and MUST only be done with expert and careful supervision. Samples/organisms MUST NOT be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to, projects involving blood, animal waste, soil, pond water, growing mold and culturing swabs from the environment. Instead, all microbial samples/organisms MUST be obtained from a science supplier/company and are limited to Biosafety Level 1 (BSL-1). BSL-1 Checklist MUST be used to guide safe practices such as sealing Petri dishes, proper disposal, etc.

- Projects involving invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.) MUST have a clear purpose that has scientific significance. Invertebrates MUST be treated humanely and intentionally harming those without a scientific purpose MUST NOT occur.

- Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycle stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates MUST be treated humanely, and if a project could cause pain or distress to the vertebrate the student will need to design a new question and procedure. A project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths were unintentional or accidental.

- In some cases, students may choose to use human subjects for their experiments. However, when an experiment could cause more than minimal risks to the human subject, the subjects (and their parents, when a minor) MUST be informed of, and consent to, the testing procedures before any experimentation begins. Informed Consent Forms MUST be used.

- Students MUST always follow approved procedures and never perform unauthorized experiments.

Note: These guidelines are adapted from the Brevard County Secondary Science Research Guide and the Intel International Science and Engineering Fair Guidelines.

Research Plan

What question will you be testing?

Describe your plan and procedure(s) to test this question. Be sure to include enough detail to ensure that safe and responsible guidelines are being followed.
Does your project involve:

Microbial Experimentation?
Check: No ☐ Yes ☐
If yes, you must obtain teacher approval and complete a Qualified Scientist Form and a Designated Supervisor Form before any testing begins. BSL-1 Checklist must be used.

Non-Human Vertebrates whose environment is being changed?
Check: No ☐ Yes ☐
If yes, you must obtain teacher approval and complete a Qualified Scientist Form and a Designated Supervisor Form before any testing begins.

Human Subjects where there is more than minimal risk involved?
Check: No ☐ Yes ☐
If yes, before any testing begins you must obtain teacher approval and complete a Qualified Scientist Form, a Designated Supervisor Form and Informed Consent Forms when more than minimal risks are involved. Visit www.societyforscience.org/isef/rulesandguidelines

Does your project involve invertebrates (e.g. worms, daphnia, fruit flies, snails, insects, etc.)? Check: No ☐ Yes ☐
If yes, describe the purpose and scientific significance of your project:

Circle the category of this project: Biological Physical Environmental
Detailed descriptions of each category are in the Science Fair Handbook and on http://elementarypgms.brevardschools.org/science_fairs.htm

Teacher and/or Parent notes or concerns to be addressed:

I have read the guidelines and agree to follow the procedures of this Research Plan and Approval Form.
Student signature ____________________ Date __________
Parent signature ____________________ Date __________

Teacher Approval:
☐ I do not approve this project, as currently planned.

Notes and/or Suggestions:

☐ I approve this project.
I will encourage the student to adhere to the guidelines and procedures of this Research Plan and Approval Form.

Teacher signature ____________________ Date __________

**It is recommended that teachers make a copy of this signed form for their own records and send the original home with the student. If a Qualified Scientist will be used the student must provide him/her with a copy of the Research Plan and Approval Form.

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines
JUDGING CRITERIA

1. Quality:
 How well the student understands the project and the area (s)he has chosen.

2. A project which involves laboratory or field work (not just research or gadgeteering).

3. An elementary child’s work – not that of a middle or high school student.
 All work has worth / value.

4. Project as compared to others in the same category and grade level.

CRITERIA

I Creative Ability...20 points

Does the project show creative ability and originality in:
 ❖ The question asked
 ❖ The approach to solving the problem
 ❖ The analysis of data
 ❖ The use of equipment
 ❖ The construction/design of the experiment

Obviously the elementary child would not incorporate all the above in his/her project, nor in depth. Try to ascertain the kind of assistance received by the child. Don’t penalize for taking help from others but try to determine what the student has contributed. EXAMPLE: Did (s)he get the idea from a book or did (s)he develop an idea as a result of reading. The child’s idea is considered more creative.

Collections are not creative unless they are used to support an investigation and help to answer a question in an original way.

Engineering should not be a lot of gadgets but a genuine contribution – the most efficient way to solve a problem, etc…
II Scientific Thought..30 points
 ❖ Is the problem clearly stated?
 ❖ Is the problem limited so that it was possible to attack it?
 ❖ Was there a procedure for reaching the solution?
 ❖ Are the variables recognized and defined?
 ❖ Are there adequate data to support the conclusions?

III Thoroughness..10 points
 ❖ Was the project carried to completion?
 ❖ How complete is the student’s daily log?
 ❖ How much time was spent on the project?

IV Skill...10 points
 ❖ Does the student have all skills required to do the work?
 ❖ Where was the work done? Home? School?
 ❖ What assistance was given?
 ❖ Was the project carried out under supervision or was it done completely by the student?

V Clarity..10 points
 ❖ Is (s)he able to explain its purpose, procedure, and conclusions clearly?
 ❖ Has the child expressed him/herself well in written work?
 ❖ Data? Results? Display?

VI Knowledge Gained..20 points
 ❖ What knowledge has the student gained as a result of doing this project?
 ❖ How would the student change the project if starting over?
 ❖ What would the student do differently?
 ❖ What were the most interesting and exciting things about the project?
 ❖ How can this project be applied to a “real life” situation (direct scientific application)?

Important: All Judge’s information regarding decisions, notes, point awards is strictly confidential.

Please advise students that the Elementary Judging process does not include feedback from the Judges. All judging decisions are final.
JUDGING SHEET

Entry Number __________________

<table>
<thead>
<tr>
<th>JUDGING CRITERIA</th>
<th>POINTS</th>
<th>SCORE OF PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. CREATIVE ABILITY</td>
<td>1- 20</td>
<td>_________________</td>
</tr>
<tr>
<td>II. SCIENTIFIC THOUGHT</td>
<td>1- 30</td>
<td>_________________</td>
</tr>
<tr>
<td>III. THOROUGHNESS</td>
<td>1- 10</td>
<td>_________________</td>
</tr>
<tr>
<td>IV. SKILL</td>
<td>1 – 10</td>
<td>_________________</td>
</tr>
<tr>
<td>V. CLARITY</td>
<td>1 – 10</td>
<td>_________________</td>
</tr>
<tr>
<td>VI. KNOWLEDGE GAINED</td>
<td>1 – 20</td>
<td>_________________</td>
</tr>
</tbody>
</table>

TOTAL POINTS ______________

This section completed after judging and selecting the winning entry numbers.

Name* ___

School* ___

*Information obtained from participant program or project card attached to back of project.
SCIENCE FAIR PROJECT ENTRY SHEET

Biological (green) (3) Environmental (blue) (3) Physical (yellow) (3)

Name __ Grade ______

School __

Title of Project __

Permission to Photo Yes No

- All work on this project, including research, experiments, design and building of this exhibit, is truly the work of this student.
- Proper supervision was used to ensure the safety of the student.
- Microbiology projects submitted to the Area Fair must have the proper forms as part of their Science Fair Project to show documentation.

__________________________ __________________________
Signature of Parent or Guardian Teacher’s Signature

Student’s Signature

SCIENCE FAIR PROJECT ENTRY SHEET:

1. Make “FULL PAGE” copies on corresponding colors (blue, green, yellow / or highlight pages) for your 3 winners in each category.
2. Make sure names are spelled correctly and are legible to read
3. Three (3) hole punch your Entry Sheets.
4. Bring completed Entry Sheets to Project Check in on Tuesday, March 8, 2016.
Southern Division Elementary Science Fair
Student Project Checklist

1. Complete this form and bring to the sign in station on project set-up day.
2. All projects must have all parts to be considered for an award.

School Name: ___

<table>
<thead>
<tr>
<th>Grade 4</th>
<th>Daily Log</th>
<th>One page summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 4</th>
<th>Daily Log</th>
<th>One page summary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Daily Log</th>
<th>One page summary</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 5</th>
<th>Daily Log</th>
<th>One page summary</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>Daily Log</th>
<th>One page summary</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>Daily Log</th>
<th>One page summary</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade 6</th>
<th>Daily Log</th>
<th>One page summary</th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All projects have been checked and all items are accounted for by School Science Fair
Contact: (Please sign)
AWARDS

SCIENCE FAIR

Medals and ribbons will be awarded as follows:

FOURTH through SIXTH Grade

<table>
<thead>
<tr>
<th>Biological Science</th>
<th>Physical Science</th>
<th>Environmental Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 First Place</td>
<td>1 First Place</td>
<td>1 First Place</td>
</tr>
<tr>
<td>1 Second Place</td>
<td>1 Second Place</td>
<td>1 Second Place</td>
</tr>
<tr>
<td>1 Third Place</td>
<td>1 Third Place</td>
<td>1 Third Place</td>
</tr>
<tr>
<td>1 Fourth Place</td>
<td>1 Fourth Place</td>
<td>1 Fourth Place</td>
</tr>
<tr>
<td>1 Fifth Place</td>
<td>1 Fifth Place</td>
<td>1 Fifth Place</td>
</tr>
</tbody>
</table>

3 Divisions will receive awards

Atlantis Division Schools = 45
Challenger Division Schools = 45
Endeavour Division Schools = 45

Total number of Awards - 135

All students entering the Science Fair will receive a Certificate of Participation

HARRIS BEST OF SHOW will be awarded to three students per division.

Additional awards may be given to individual students, schools and/or general fair support from Community Partnerships or Business sponsors –

Andretti Thrill Park, Back Country Fly Fishing Association, Eastern Florida State College Planetarium and Observatory, Brevard Schools Foundation, Brevard Zoo, FUN-SPOT, Cinema World, Community Credit Union, Dean Stewart Photography, Florida Association of Science Teachers (FAST), the Dinosaur Store, The Exploration Tower, Grimaldi Candy and Gifts, Kennedy Space Center, Sonny’s Real Pit Bar-B-Q, Shells of Melbourne, Orlando Science Center, Outback Steakhouse (Viera), Wonder Works and 4 C’s Nursery. – (Sponsors of last year’s fair)
TIPS FOR EXHIBITORS

USE THE SCIENTIFIC INQUIRY PROCESS TO SOLVE YOUR PROBLEM

Steps are:
1. Problem - state in question form
2. Hypothesis – predict results before experimentation
3. Materials – items used
4. Procedure – steps followed to test predictions
5. Results – what happens during the experiment (measurements)
6. Conclusion – compare results with hypothesis

Grade Level Requirements for Exhibits

4th graders Project, Daily Log, and a one page summary
5th & 6th graders Project, Daily Log, one page summary, research and a bibliography

*Project – refers to the backboard and any materials that are displayed.
*Daily Log – refers to a notebook detailing the student's daily work and data.
*Summary – one page briefly explaining the most important parts of the project.
*Bibliography – a listing of all resources used to obtain research information.
*Internet items must be credited. (Articles, graphs, charts, photos, etc.)

EXHIBIT DIMENSIONS & Project Display

Exhibits must be confined to table space with limits of 4 feet in height, 2 feet in width, and 12 inches deep.
Exhibits must be self-supporting.
NO display items in front of exhibit. Research and Daily log notebook/s can be displayed.
Students can bring display on judging day and take display with them when leaving judging session

Board display items – refer to page 4, Item 11
Projects larger than size limitations will be disqualified at check-in area.
*** = Project label should be placed in the middle panel of show board

Daily Log and 1 Page Summary – Grades 4-6
Bibliography – Grades 5 & 6

Suggested items to be mounted on show board

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Problem</th>
<th>Graphs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Procedure</td>
<td>Data Summary</td>
<td>Conclusion</td>
</tr>
<tr>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Get an Idea for Your Project
 Find an area that interests you. You might want to look at a list of science fair categories to help decide. Talk over ideas with your family, teacher, or friends. Use TV commercials, magazines, newspapers, hobbies, sports, or books to get more ideas. Think about problems around the house that you would like to solve. You can even test household items.

2. Start a Daily Log
 A detailed Daily Log with accurate records allows a scientist to describe their investigation so others can repeat it and try to replicate the results. Use a separate permanent bound or spiral notebook as your Daily Log and divide it into two sections: “Daily Work” and “Data.”
 - In the Daily Work section write down all the things you do or think about concerning your project each day - like a diary. Write a date for each entry to show the day to day record of your progress while doing your project. Give details. Include your procedure, research, diagrams, changes to the experiment, bibliography, etc.
 - In the Data section make charts before you start your testing. Record all measurements, readings, etc. in these charts in ink as you measure them during your testing. If you make a mistake draw a line through it and rewrite it. Do not erase or “white out.” Data should not be recorded by typing. Record any and all other observations you make while testing also. A good scientist keeps careful, detailed records of findings and test results. Sometimes it’s the unexpected observation that leads to a new discovery.

3. Do a Search for Background Information
 Every scientist spends time getting background information. Use the library; write or call experts; write to companies and organizations; use the Internet* on your computer. Start keeping a bibliography with complete information on every source you used or tried to get. Good research will help you become an expert on your topic. As an expert, you will be able to make better hypotheses, plan better testing, and draw better conclusions. You’ll also impress others with your knowledge when you share the results of your project with them.

4. State the Problem in a Question Form
 This part (often used as a title) asks what you are trying to find or show in your investigation. Make sure your question or problem is one that can be solved by testing. It must involve more than a demonstration survey, or a collection. Don’t confuse the use of “affect” (a verb) with “effect” (a noun).

5. State Your Hypothesis
 The hypothesis is an educated guess or a prediction of what you think will happen during your experimentation. Use background information to help you prepare this prediction and to explain it. Be sure to write your hypothesis before you start your experiment. The results of the test you do later do not have to support the hypothesis in order for the experiment to be a success.

6. Design the Experiment
 Determine the procedure that you will follow to test your hypothesis and record it in your Daily Log. The procedure should explain the steps to be followed in order to find the answer to your question or problem. Think about necessary safety precautions that will be taken. Make a complete list in your Daily Log of all the materials you will need.
• Identify the conditions (also called Controls) that will be kept the same during the experiment. These will help you run a fair, scientific test that will give you valid results.
• Identify the one factor you will change (on purpose) to get a result. This is called the Independent variable (Also called Experimental or Manipulated variable).
• Identify how your results will be measured. This is called the Dependent variable (also called Responding variable). It’s important to have results that can actually be measured. Use measuring tools with metric units whenever possible.
• Most experiments have a Control Group. This is the group of subjects that is treated in the “normal” way so you can compare them to the Experimental Group (the group of subjects that have the one factor changed.)

A good procedure is very detailed – like a good recipe. This makes it easy for other scientists to duplicate your experiment so they can verify your results.

7. Conduct the Experiment
 Follow your procedure carefully to ensure fair, scientific testing. While testing, record all data, in ink, directly into your Daily Log. Don’t write measurements on a piece of paper and then copy them into your log – this can lead to errors. Be accurate and exact as you observe, measure, describe, count, or photograph. Work safely. If necessary, make changes in your procedure and document them in your Daily Log.

8. Repeat the Procedure
 The results will be more convincing and valid if you repeat the experiment as many times as possible. For example, an experiment that uses ten plants will give more valid results than one that tested only one or two plants. Testing and measuring the distance a car rolled down a ramp twenty times would be more valid than testing it only three times. Understand that an experiment must be repeated many times and yield consistent results before the results can be accepted.

9. Analyze the Data (Results)
 Look at the measurements you recorded in your Daily Log closely. Think about the data and decide what the results mean. Try to find explanations for your observations. If possible, examine your results mathematically using percentages, mean, median, range, and modes. Be sure to know the meanings of these words if you use them. Construct graphs or tables that will go on your backboard to show the results more clearly. Charts and graphs can help us understand patterns of change. The data will help you decide whether your hypothesis is supported or should be rejected. Identify data that is contradictory or unusual and try to explain it in your conclusions.

10. Make Conclusions
 Conclusions are statements telling what you found out or learned during your investigation. This is a very important part of your project since you probably learned a lot. They are based on the results of your experiment and your hypothesis. Explain how the data you collected supports your hypothesis. If the data doesn’t support your hypothesis, explain why you reject your hypothesis. Explain what further testing might be done to better answer your original question. Through the use of science processes and knowledge, people can solve problems, make decisions, and form new ideas. Tell how people might apply your findings to everyday life. Can you explain any unusual findings from your testing?

11. Communicate Your Results in a Summary or Abstract
 Scientists share their findings with other scientists. Write a short, one-page, five-paragraph summary (sometimes called an Abstract) that explains the most important parts of your project. An easy format to use is to write one paragraph that summarizes each of the following:
 Problem or question. State it and explain why you chose it.
 Hypothesis. Tell your prediction and explain why you thought it would happen.
Testing. Give a general overview of your procedure telling how you used fair and testing. Tell about your variables, how you had repeated trials or multiple subjects, testing time, and if you had a control group.

Results. Summarize your data by telling your final measurements, totals, or averages. Share a few of the most important observations you made. Compare your control group to your experimental group – did one do better than the other?

Conclusions. State whether your hypothesis was supported by the data you collected or not. Tell the most important thing you learned. If the project was to be repeated what changes would you make and why?

Practice an oral presentation also. Be an expert on all parts of your project so you’ll be prepared to answer an interviewer’s or a classmate’s questions.

12. Construct a Display that Explains Your Project
Here are some suggested parts you will want to include in your display. These will help you to organize your presentation and to communicate information about your project to others:

- PROBLEM or QUESTION - Statement of problem in question form.
- HYPOTHESIS - Your prediction of what will happen and your reasoning.
- MATERIALS - A complete list of materials and equipment you used.
- PROCEDURE - Step-by-step explanation of how you tested.
- DATA or RESULTS - Shows the information you collected by testing. Includes graphs, tables, charts, diagrams, or photographs.
- CONCLUSION - Statements relating your data to your hypotheses to tell what you learned by your testing.

Display your Daily Log, Summary or Abstract, and Bibliography on the table in front of your backboard.

13. Be ready to answer question that judges often ask.
Below are sample questions that judges often ask students during judging interviews. It is a good idea to practice answering the following questions before meeting the judges:

Can you explain or describe your project?
What procedures did you follow that made sure it was a fair and scientific test?
Where, or how, did you get the idea for your project?
What kind of help did you receive while working on your project?
What are the most important things you have learned by doing your project?
If you had more time, what things would you do to change or improve your project?
How much time did you spend working on your project?
How can you apply what you have learned to “real life” situations?

Enter your project in the school science fair. Be sure to follow the rules. Set up your backboard, Daily Log, Summary or Abstract, and Bibliography at the fair. Have fun showing others what you have learned!

*Use Internet sites for more information about science projects - go to:
Brevard District Website....
Departments – Elementary Programs
Curriculum – Science – Science Fair
QUALIFIED SCIENTIST FORM

To ensure that safe and ethical science is conducted, this form is required for research involving microbial experimentation. It is also required when non-human vertebrate animals are tested and their environment is changed, and when human subjects are tested and there is more than minimal risk involved for the subjects.

A Qualified Scientist is a medical doctor, veterinarian or individual with relevant science credentials. A science teacher, without these specific credentials, cannot be a “qualified scientist”. This form must be signed prior to the start of the student’s experimentation. This form MUST be part of the student’s project documentation available at the Fair.

Student’s Name
Title of Project

To be completed by the Qualified Scientist:
Scientist Name
Advanced Degree
Degree Specialty
Position
Address
Phone

- Students must provide a copy of their Science Project Research Plan and Approval Form to the Qualified Scientist.
- Students should always follow approved procedures and never perform unauthorized experiments.

1. Will microbial samples/organisms be used? Yes No
 Microbial experimentation (involving microscopic organisms such as bacteria, fungi, etc.) done by elementary students is potentially dangerous and should only be done with expert and careful supervision. Samples/organisms should not be collected, isolated and/or cultured from the environment as they are potentially pathogenic. This includes, but is not limited to, projects involving blood, growing mold and culturing swabs from the environment. Instead, all microbial samples/organisms should be obtained from a science supplier/company and are limited to Biosafety Level 1 (BSL-1). The BSL-1 Checklist must be used to guide safe practices such as sealing Petri dishes, proper disposal, etc.

2. Will non-human vertebrates be used? Yes No
 Projects involving non-human vertebrates (including embryos, eggs, tadpoles, and other early life cycle stages of vertebrates) are held to a higher standard than projects testing invertebrates. Vertebrates must be treated humanely, and if a project could cause pain or distress to the vertebrate, the student will need to design a new procedure. This form is required when changes are made to an organism’s environment. A project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths were unintentional or accidental.

3. Will human subjects be used? Yes No
 When an experiment could cause more than minimal risks to a human subject, the subjects (and their parents, when a minor) must be informed of, and consent to, the testing procedures before any experimentation begins.

I certify that I have reviewed and approved the Research Plan prior to the start of experimentation. If the student or Designated Supervisor is not trained in the necessary procedures, I will ensure his/her training. I will provide advice and supervision during the research. I have a working knowledge of the techniques to be used by the student in the Research Plan. I understand that a Designated Supervisor is required when the student is not conducting experimentation under my direct supervision.

Qualified Scientist’s Printed Name
Signature of School Person Approving

Signature Date of Approval

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines

Brevard Public Schools – Elementary Science
DESIGNATED SUPERVISORS FORM

To ensure that safe and ethical science is conducted, this form is required when a Qualified Scientist has been identified but may not be available to supervise experimentation. A “Designated Supervisor” is someone who agrees to oversee the experiment in the event the Qualified Scientist is not available to supervise. The Designated Supervisor must be trained by the Qualified Scientist to ensure the safety of the student and others. All animals must be treated in a humane manner. A project with ANY DEATHS in any vertebrate group or subgroup is NOT PERMITTED to be entered into the Science Fair even if the deaths are unintentional/accidental.

This form MUST be part of the student’s project documentation available at the Fair.

Student’s Name ________________________________

Title of Project ________________________________

To be completed by the Designated Supervisor:

Qualified Scientist Name ________________________

Advanced Degree ______________________________

Degree Specialty ______________________________

Position ______________________________________

Address ______________________________________

Phone ___

List or describe your responsibilities in supervising the student. Include all hazardous substances and devices used in the research and safety precautions to be employed: (Use back or attachments if necessary).

__

__

__

__

__

__

__

__

__

__

I certify that I have been trained in the techniques to be used by this student prior to the start of experimentation and that I will provide direct supervision.

Designated Supervisor’s Printed Name __________________________ Signature of School Person Approving __________________________

Signature __________________________ Date of Approval __________________________

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines
INFORMED CONSENT FORM

To ensure that safe and ethical science is conducted, this form is required when an experiment could cause more than minimal risks to the human subject. The subjects (and their parents, when a minor) must be informed of, and consent to, the testing procedures before any experimentation begins. Use a separate form for each test subject. This form MUST be part of the student's project documentation available at the Fair. For more details, see the online Risk Assessment Guide at www.societyforscience.org/isef/rulesandguidelines

Student Researcher’s Name

Grade

School

Title of Project

To be completed by the Student Researcher:

1) What are the research procedures in which the subject will be involved?

__

__

__

2) What are the possible discomforts that may reasonably be expected by participating in this research?

__

__

3) What procedures will be used to minimize risks?

__

__

__

Adult Sponsor’s Printed Name Signature Phone

Qualified Scientist’s Printed Name Signature Date Signed

Title Institution Phone

To be completed by human subject prior to experimentation:

☐ I have read and understand the conditions stated above, and I consent to participate in this research procedure. I realize I am free to withdraw my consent and to withdraw from this activity at any time.

☐ I consent to the use of visual images (e.g. photographs, video) involving my participation in this research project (optional).

Participant’s Printed Name Signature Date Signed

If participant is under 18 years old, a parent/guardian signature is required. If the subject of this experiment or parent/guardian has any questions about this experiment, the Adult Sponsor should be contacted.

I have received and reviewed a copy of any test, survey or questionnaire used in the research. ☐ Yes ☐ No

Parent’s/Guardian’s Printed Name Signature Date Signed

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines
This **Human Subject Verification of Informed Consent Form** is required when student research involves human subjects and the research could cause more than minimal risks to the human subjects. This form must be attached to a sample copy of the **Informed Consent Form** (with no names on it) used by the student.

- A copy of these two forms MUST be part of the student’s project documentation available at the Science Fair.
- The originals, of this form and the completed Informed Consent Forms, are to be kept by the sponsor (teacher) and secured at the student’s school for a period of no less than 3 years.

Name of adult sponsor (teacher): __

Name of student researcher: __

Student Researcher’s School: ___

Number of consent/assent human subject forms collected: ________________

Date range of consent/assent human subject forms collected:

________________ to __________________

I, as the adult sponsor, verify that __________________________ has collected __ appropriately signed and dated informed consent forms for the research project for the 2015-2016 school year.

__________________________________ __________________________

Adult Sponsor Signature Date

__________________________________ __________________________

Student Researcher Signature Date
BSL-1 Checklist – for Pathogenic Hazardous Biological Agents

Pathogenic Hazardous Biological Agents BSL-1 (Biosafety Level 1):
1. Agents not known to consistently cause disease in healthy adults, and of minimal potential hazard to lab workers and the environment.

Aseptic Technique Practice:
1. Specific training in procedures being performed.
2. Supervision by a qualified teacher.
3. Limited access when experimentation is taking place. (may not be done at home)
4. After plates are cultured and sealed with masking tape or Petri-Seal along the outside edge of the Petri dish, they are not to be reopened.
5. Hand washing before and after handling cultures and before leaving lab.
6. Eating, drinking, applying makeup or contacts is prohibited in the lab.
7. Work surfaces can be decontaminated after spills and at end of day with a 70% isopropyl alcohol.

Safety Equipment Requirements:
1. Work can be performed on an “open bench” (laboratory area) or in a fume hood.
2. Lab coats or aprons are to be worn.
3. Appropriate gloves will be worn.
4. Protective eyewear should be worn.
5. Eyewash must be available.
6. Bench tops impervious to spills and resistant to moderate heat, solvents, acids, alkalis, or chemicals used to decontaminate surfaces.
7. Designed to be easily cleaned. Carpets and rugs are not appropriate.
8. Windows securable and fitted with screens.

__ __________________
Student Signature Date

__ __________________
Teacher Signature Date

The Intel International Science and Engineering Fair (Intel ISEF) website provides additional resources and guidelines that can be a valuable resource for students, teachers, and parents. Visit http://www.societyforscience.org/isef/rulesandguidelines
ART FAIR SECTION
ART FAIR OFFICIALS

Co Chairpersons

Ms. Sherri Snow
Art Teacher, Sunrise Elementary School
Mrs. Kami Lambert
Art Teacher Melbourne School, West for Science

Dr. Desmond Blackburn
Superintendent of Schools

Mrs. Jane Cline and Dr. Mark W. Mullins
Area Superintendents

Mrs. Cyndi Van Meter
Associate Superintendent of Curriculum and Instruction

Dr. Lynn Spadaccini, Director
Office of Elementary Programs

Ms. Bridget Geiger, Resource Teacher
Office of Middle School Programs

Ms. Brenda Sheets
President of Harris Foundation

Ms. Coleen Bondi
Manager, Harris Corporate Relations

Art Fair Committee Members
Nadine Antaillia, Palm Bay Academy Charter
Enrique Cortes, Palm Bay Elementary
Su Wetherington, Dr. W. J. Creel Elementary
Art Fair Schedule

2015
August 26 Notice of Intent to Participate – send to Sunrise Elementary Principals send in Intent to participate to Mr. Pichard.

February 19 Names of Participating Students Due - MUST BE TYPED Use Format below & submit to Kami Lambert (email) at Lambert.Kamela@brevardschools.org
List: School
 Art Teacher
 First / Last Name of each student
(Missing the deadline means your students’ names will NOT be in the Art Fair program.)

2016
March 8 Deliver Art Fair entries* and completed Inventory Form to Melbourne Auditorium- 7:00am-4:00pm
*include 2 typed labels & artist’s statements (refer to Guidelines pgs. 25-26) Teachers should ask the science contact or a volunteer to deliver entries if this is an inconvenient time.

March 9 Exhibit Set Up and Judging begins at 8:00am
Schools will be notified by email or phone about art fair winners
Schools will then notify student winners.

March 10 Open House 3:00pm - 6:30pm Melbourne Auditorium

Art Awards Ceremony 6:30pm
(Only 1st, 2nd, and 3rd place, Best of Show, and Recycle Art Award winners should report to the left of the stage by 6:00pm to line up for the presentation. Merit Award winners are not part of the ceremony. Please, recognize Merit winners at school.)

Exhibit Take Down 7:30pm (approx.)
ALL Art Teachers and/or contacts are needed to help take down entire exhibit before checking out. No artwork will be released until exhibit is disassembled. (refer to pg. 25)
Check-in Procedures

March 8, 2016 / Melbourne Auditorium / 7:00am – 4:00pm

____1. Turn in completed Inventory Form.
____2. Turn in artwork with two typed labels attached and duplicate labels paper clipped (refer to guidelines pg. 25)
____3. Assist committee with categorizing artwork for judging and display (placing division dots and sorting by grades). Artwork that does not meet judging criteria will not be judged and identified with a red dot.
____4. Set up recycling project on designated areas.
____5. Take all transporting materials (boxes, folders, etc.) away. (Do not leave at Auditorium site)

Check-out Procedures

March 9 / 2016 / Melbourne Auditorium / 7:30 pm approx.

____1. Committee member(s) will announce when it is time to begin disassembly exhibit AFTER Science Fair Awards Ceremony is completed.
____2. Challenger Division art teachers “take down” artwork and display boards.
____3. Atlantis and Endeavour Division art teachers “sort” all artwork by schools. (place at appropriate school signs provided).
____4. Once exhibit is down, collect, count and inventory individual school artwork. (So you don’t take another school’s artwork)
____5. Go to “Check Out” table – Sign Out and get brown envelope with certificates and programs.
____6. Take down recycle project / display.

REMINDEERS: Following procedures ensures; orderly conclusion to the Art Fair, helps avoid missing artwork and shows respect for artwork and all involved. Thank you for your cooperation!
Art Fair Guidelines

Entries & Categories

1. Each Visual Art teacher may submit **2 entries per grade level** (kindergarten through 6th only) in either **2-Dimensional** (drawing, painting, collage, print making, or mixed media), or **3-Dimensional** (pottery, sculpture, assemblage, fibers, papier maché or mixed media) categories. Final decision on 2-D or 3-D category is up to the judges. **NEW**: *Photographs and computer-generated artwork may be entered and are eligible for a MERIT AWARD.*

2. Artwork must be made at school during the current school year, and created by students who are currently enrolled in and attending the same school indicated on their artwork entry form/labels. One piece of artwork per student.

3. Each school may also submit **one entry**, made collaboratively by 10 or more students, in the **Recycle Art Category**. (Refer to pg. 27)

4. **2-D artwork is to be properly matted.** (Top frame of mat board mounted on stiff backing). Do not use construction paper for mat or backing. Make sure the artwork and matting are strongly adhered together.

5. **3-D artwork must be secure and free of any broken, missing parts, or loose pieces.** Due to the variety of materials, shapes, and sizes of 3-D pieces, consider the weight and stability of the work to determine if a base or special support is needed for display on the 4 X 8’ tables provided.

6. Due to limited space, all **artwork (both 2-D & 3-D) shall not exceed the size of 28 inches** in any direction (including mat).

Labeling & Artist’s Statements

7. **TYPE** all information on the Standards label provided (sent via email).
 - Print a second/duplicate label for each piece of artwork.*
 - (2-D artwork) Place 1st label at the lower right corner of the work by putting glue along the top edge and attach from the backside so it’s hanging down and can be read from the front. (This allows for easy removal without ruining the expensive mat board).
 - (3-D artwork) Place labels near the base/bottom of the artwork in a way that compliments the piece.
 - *The duplicate label should be paper clipped onto the original attached label name side up for grade K-3, or name side hidden (face down) for grades 4-6.*
8. **Artist's Statement:** On a 3 X 5” index card or similar size paper, **type** a statement by the made by the student artist about their artwork. (Judges prefer 1-3 sentences - no more than 5). It could answer the question, “If your artwork could talk, what would it say?” Attach the statement at the bottom center of the mat or base/bottom of the piece.

Hanging Artwork - Setting up Display

9. **T-Pins are used to hang artwork on display boards.** To avoid putting holes in matting and/or artwork, place a tab (one piece of matching or complimentary mat board/poster board extending from the top of the matting)...or use several Velcro dots/squares (rough side) on back of artwork for easier attachment to the display boards.

The tab should extend about 1” above matting along top edge. Attach tab with heavy-duty tape (like duct or packaging tape) or Elmer’s glue. **DO NOT use glue sticks, masking tape, or rubber cement.**

Without tabs at the top of the matted 2D artwork, foam core board backing, or use of Velcro, T-pins must be put through the artwork.

10. 3-D artwork and Recycle Category projects will be placed on designated tables and areas on the floor. Teachers must provide any needed supports, bases, etc. **All pieces must be stable and secure to avoid accidents and broken artwork.**

11. *Please, have ALL artwork tagged and ready for display at check-in. Due to time constraints, there is no on-site assembly. Any artwork that doesn’t follow guidelines or meet criteria may be displayed, but will not be judged. **NO EXCEPTIONS.**
Recycle Art Category

1. In addition to individual 2-D & 3-D, each school may enter ONE Collaborative piece of “recycle art”. The project should incorporate the use of recycle materials or other found object type items (e.g. styrofoam, foil, boxes, newspaper, plastic, buttons, bottle caps, wire, tubes etc.) No longer will there be two categories. All projects will be judged under one category: recycle art.

2. To encourage cooperative/collaborative "teamwork" the recycle art piece must be made by 10 or more students (of any grade, K-6). Less than 10 students on a team will NOT be judged.

3. The artwork can be two or three-dimensional. Maximum size to fit within 6'X8' floor space. Nothing should extend beyond the designated base floor space. A TYPED Recycle Art label must be attached.

4. The Recycle Art project should take minimal time and effort to put up/take down for display (no more than 20 min. at Melbourne Auditorium)

5. Each school's Art teacher or contact person is responsible for properly delivering, setting up, and picking up the recycle artwork at the Melbourne Auditorium during the designated times:
 - Delivery/set up: Tues., March 8, 2016 7:00am-4:00pm
 - Take down/pick-up: Thurs. March 10, 2016 7:30pm (approx.)*

 * All Art Representatives must stay until all artwork is taken down, display boards are disassembled and everything is inventoried.

 Recycle Project should take minimal assemblage and project should take no more than 20 minutes to assemble or take down at fair closure.

6. A Certificate will be presented to each winning school at the Awards Ceremony. Ribbons will be placed on the projects. Give a brief description of the project on the Recycle Art Label: be sure to address your environmental teaching objective, the environmental theme, and/or why you chose that particular recycled material. During judging school name will be covered

7. Recycle Art label will be e-mailed
Judging and Awards

1. Judges will consider the following criteria:
 a. Expressive use of the Elements of Art and Principles of Design (e.g. line, color, shape, texture, space and unity)
 b. Creativity, originality, craftsmanship and degree of difficulty
 c. Dramatic value and artistic design

2. Divisions are judged separately (Atlantis, Challenger and Endeavour)
 Only 4th, 5th and 6th grades are judged for 1st, 2nd and 3rd place awards or Best of Show.

3. All judging information is confidential and decisions are final.

4. Awards (ribbons and medals) will be given for each 4th, 5th and 6th grade level student at the awards ceremony for the following:

 Nine awards may be given for 2-Dimensional Art
 First, second and third place for Atlantis
 First, second and third place for Challenger
 First, second and third place for Endeavour

 Nine awards may be given for 3-Dimensional Art
 First, second and third place for Atlantis
 First, second and third place for Challenger
 First, second and third place for Endeavour

 One Best of Show for each Division – (Atlantis, Challenger and Endeavour)

 Recycle Art Awards. Ribbons will be given to winning projects.

5. 75 Merit (Honorable Mention) Awards will be given to recognize student artists in any grade. Kindergarten through third grade entries and photographs and computer-generated artwork will not be judged, but may receive a Merit Award.

 These awards will not be presented at the Awards Ceremony.

 Art teachers are encouraged to make a special presentation for Merit Award winners at their schools.

6. One Cover Design Award will be given to a piece of artwork selected to be used as the following year’s Southern Division Elementary Art & Science Fair handbook.
“Shells at the Beach”
(Silk Dye Painting) by
Emma Aiken
Grade 4 - Sunrise Elementary
Art Teacher – Sheri Snow